Autoreducibility and Completeness for Partial Multivalued Functions
نویسندگان
چکیده
منابع مشابه
Autoreducibility and Completeness for Partial Multivalued Functions
In this paper, we investigate a relationship between manyone-like autoreducibility and completeness for classes of functions computed by polynomial-time nondeterministic Turing transducers. We prove two results. One is that any many-one complete function for these classes is metric many-one autoreducible. The other is that any strict metric manyone complete function for these classes is strict ...
متن کاملComplements of Multivalued Functions
We study the class coNPMV of complements of NPMV functions. Though defined symmetrically to NPMV, this class exhibits very different properties. We clarify the complexity of coNPMV by showing that it is essentially the same as that of NPMVNP. Complete functions for coNPMV are exhibited and central complexity-theoretic properties of this class are studied. We show that computing maximum satisfyi...
متن کاملLearning Multivalued Multithreshold Functions
This paper concerns multivalued multithreshold functions, {0, 1, . . . , k}-valued functions on Rn that may be considered as generalizations of (linear) threshold functions, or as discretized versions of artificial neurons. Such functions have arisen in the context of multiple-valued logic and artificial neural networks. For any fixed k, we present two procedures which, given a set of points la...
متن کاملDigitally Continuous Multivalued Functions
We introduce in this paper a notion of continuity in digital spaces which extends the usual notion of digital continuity. Our approach uses multivalued maps. We show how the multivalued approach provides a better framework to define topological notions, like retractions, in a far more realistic way than by using just single-valued digitally continuous functions. In particular, we characterize t...
متن کاملglobal results on some nonlinear partial differential equations for direct and inverse problems
در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...
ذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEICE Transactions on Information and Systems
سال: 2017
ISSN: 0916-8532,1745-1361
DOI: 10.1587/transinf.2016fcp0006